| Name î: | R. No | Class/ Sec: | Date: | Invig. Sign | |--|---|--|---|---| | | | | L SCHOOL, NAR
TEST FIRST 2018-1 | | | MM: 50 | V bal WV / | | | TIME: 1:30 Hr. | | General Instruc | ctions: | | samilyada da ya wa da da | | | ElectrorUse Blu | tions are compulsor
nic devices are prohi
e or Black Pen only.
rite answer or object | bited to use in the e | | ach question. | | A | | | ty and (ii) electric dip
y without touching it? | | | voltage capacita 6 p F ca | across the 6 p F cap | pacitor is 2 V. Comp
F are connected in
pute the total batter | oute the total battery series with a battery y voltage. | es with a battery. The voltage of the voltage across the [2] | | (b) A syste
(0, 0, -1 | m has two charges | $q_A = 2.5 \times 10^{-7}$ C ar
15 cm), respectivel | | [2]
C located at points A:
charge and electric
[3] | | The street of th | | | gy stored in a capac | [2]
citor of capacitance 'C'
[3] | | parall
resist
(b) Deduc | el with each other ac
ance? | cross an external re | sistance R. What is | stance, are connected in
the current through this
[2]
or when a dielectric slab
[3] | | Condu
(b) Using g
spheric
graph | ctor.
gauss' law deduce th
cal conducting shell | ne expression for th
of radius R at a poi
electric field as a fu | e electric field due to
nt (i)outside and(ii)in | nperature for a metallic
[2]
o a uniformly charged
side the shell. Plot a
R. (r being the distance
[3] | | | | [OR] | | | | | the expression for the | ne torque acting on | a dipole of dipole mo | oment P in the presence | (b)Consider two hollow concentric spheres, S₁ and S₂, enclosing charges 2Q and 4Q respectively (i) Find out the ratio of the electric flux through them. (ii) How will electric flux through the sphere S1 change if a medium of dielectric constant 'E, is introduced in the space inside S₁ in the place of air? Deduce the necessary expression [3] - Q7. (a) Name the colours corresponding to the digits 4 and 7 in the colour code scheme for carbon resistors. [2] - (b) Explain the term 'drift velocity' of elections an a conductor. Hence obtain the expression for the current through a conductor in terms of 'drift velocity' [3] - Q 8 (a). Draw the equipotential surfaces due to an electric dipole .locate the points where the potential due to the dipole is zero. [2] - (b) A battery of 10 V and negligible internal resistance is connected across the diagonally opposite corners of a cubical network consisting of 12 resistors each of resistance 1 Ω Determine the equivalent resistance of the network and the current along each edge of the cube [3] - Q9 (a) A hollow metal sphere of radius 5 m is charged such that the potential on its surface is 10 v. what is the potential at the centre of the sphere? - (b) Draw With the help of suitable diagram ,explain the principle and construction of Potentiometer Explain how you will use it to measure the internal resistance of a cell. [3] - Q10 (a) A hollow metal sphere of radius 5 m is charged such that the potential on its surface is 10 v what is the potential at the centre of the sphere? - (b)Two heating elements of resistances R1 and R2 when operated at a constant supply of voltage, V, consume powers P₁ and P₂ respectively. Deduce the expressions for the power of their combination when they are in turn, connected in (i) series and (ii) parallel across the same voltage supply. [3]